STRUKTURUNTERSUCHUNGEN AN 4-METHYL-6-PHENYL-2-(THIOBENZOYLMETHYLEN)-2H-THIAPYRAN

J. KAISER,* A. HANTSCHMANN, R. RICHTER und R. SCHEIBE

Sektion Chemie der Karl-Marx-Universität Leipzig, DDR-7010 Leipzig, Liebigstrasse 18, German Democratic Republic

und

J. FABIAN Sektion Chemie der Technischen Universität Dresden, DDR-8027 Dresden, Mommsenstrasse 13, German Democratic Republic

(Received in Germany 4 May 1981, in revised form 21 September 1981)

Zusammenfassung—Die Struktur von 4-Methyl-6-phenyl-2-(thiobenzoylmethylen)-2H-thiapyran (1) wurde mittels Röntgenstrukturanalyse (RKSA) und ESCA-Spektrum sowie durch quantenchemische Berechnungen untersucht. Die zwischen den Schwefelatomen bestehende nichtbindende Wechselwirkung ($R_{S...S} = 3.000$ (1) Å) ist nicht auf Wechselwirkungen vom Coulomb-Typ, sondern auf π -Wechselwirkungen zurückzuführen.

Abstract—The structure of 4-methyl-6-phenyl-2-(thiobenzoylmethylene)-2H-thiapyran (1) was investigated by ESCA, X-ray analysis and quantum chemical calculations. The no-bond interaction between the sulphur atoms $(R_{5...5} = 3.000(1) \text{ Å})$ is caused by π -type interaction rather than by Coulomb-type interaction.

Bei der Einwirkung von Pyridin auf 3 - Methyl - 5 phenyl - 1,2 - dithioliumsalze,¹ beim Erhitzen von 5 -Phenyl - 1,2 - dithiol - 2 - ylidenmalonsäure bzw. essigsäure in Ethanol oder Benzene, mit oder ohne Arylamin,² sowie durch Einwirkung eines H₂S/HCl-Gemisches oder von Phosphor(V)-sulfid auf Benzoylaceton oder 1-Phenyl - 3 - phenylaminobut - 2 - en - 1 - on in Schwefelkohlenstoff² oder Dioxan³ entsteht eine intensiv rotviolette Verbindung A der Zusammensetzung C₂₀H₁₆S₂ in unterschiedlichen, schwer reproduzierbaren Ausbeuten (Schema 1).

Die Bildungswege und die Bildungstendenz von A legten nahe, dass in allen genannten Reaktionen gemeinsame Zwischenstoffe, das instabile 1-Phenylbutan-1,3dithion² bzw. das 1,2-Dithiafulven⁴ auftreten, die unter Selbstkondensation schliesslich das Produkt A liefern. Die daraus für A abgeleitete Struktur^{1,4} eines 4 - Methyl -6 - phenyl - 2 - (thiobenzoylmethylen) - 2H - thiapyran (Z)-1 konnte durch das ¹H-NMR-Spektrum gestützt werden.² Auch Deuterierungsexperimente stehen mit dem angenommenen Bildungsweg in Einklang.⁵ Ein weiterer Strukturvorschlag für A, das zu (Z)-1 valenztautomere 2,7 - Diphenyl - 5 - methyl - 1,7a - dithiainden (2) mit vierbindigem Schwefel, gründet sich auf die Ähnlichkeit des UV-Spektrums von A mit dem des iso- π elektronischen Trithiapentalens 4 sowie die Lage des exocyclischen Methinprotons im ¹H-NMR-Spektrum, das gegenüber vergleichbaren Vinylprotonen nach niedrigem Feld ($\delta = 7.75$ ppm (s)) verschoben ist.⁵

Ausgehend von der Erkenntnis, dass es in Verbindungen mit dem Strukturelement -S-C=C-C=S zu Wechselwirkungen zwischen beiden Schwefelatomen kommen

1639

kann, wurde bei dem Strukturvorschlag für A nur (Z)-1 in Betracht gezogen. (E)-1 kann jedoch aufgrund der Spektren und des vorhandenen Vergleichsmaterials nicht mit Sicherheit ausgeschlossen wreden. Beim Vorliegen einer Z-Konfiguration bliebe weiterhin zu klären, ob und inwieweit eine Wechselwirkung zwischen den räumlich benachbarten Schwefelatomen vorliegt, d.h., ob Formel (Z)-1, 2 oder die des Thiapyryliumthiolats 3 die Struktur von A richtig wiedergibt, oder ob vielmehr die realen Bindungsverhältnisse am besten durch eine Mesomerie mit den Grenzformeln 1, 2 und 3 beschrieben werden. Eine Röntgenkristallstrukturanalyse und das ESCA-Spektrum von A sollten die noch offenen Probleme für den festen Zustand eindeutig klären. Darüber hinaus sollte untersucht werden, wie die Elektronenverteilung und die Bindungen durch quantenchemische Berechnungen beurteilt werden. Wir fanden für die Verbindung A die Struktur (Z)-1 (Abb. 1) und können (E)-1 und 2 eindeutig ausschliessen.

Für Trithiapentalene und verwandte Verbindungen mit unterschiedlichen Substituenten ist das gesamte Spektrum von S-S-Bindungslängen [S-S-Einfachbindungen

Abb. 1. Molekülstruktur von (Z)-1.

(um 2.05 Å), aufgeweitete S-S-Bindungen (2.2 bis 2.7 Å), bis zu nichtbindenden S...S-Wechselwirkungen (2.8 bis 3.1 Å)] gefunden worden.⁶⁻¹¹ Unser S(1)-S(2)-Abstand liegt mit 3.000(1) Å im Bereich der nichtbindenden Wechselwirkungen. Die S(2)-C(13)-Bindungslänge liegt zwischen einer Einfach- und Doppelbindung (1.682(3) Å) und ist vergleichbar mit jener in 4.4'-Dihydroxythiobenzophenonmonohydrat¹² und in Monothiodibenzoylmethan.¹³ Sie ist kürzer als die beiden S-C-Bindungen des Thiapyranringes (1.746(3) und 1.739(3) Å). Die C-C-Bindungslängen im heterocyclischen Sechsring alternieren signifikant. Die Atome des Thiapyranringes liegen in einer Ebene (III) und sind koplanar mit den Atomen S(2), C(12) und C(13) (IV). Der Dihedralwinkel zwischen der Ebene (III/IV) und der des Phenylringes (I) bzw. (II) beträgt 33.5° bzw. 27.4° (Abb. 1). Es gibt keine nennenswerten intermolekularen Kontakte.

Die ESCA-Untersuchung von A ergab im S 2p-Spektrum zwei annähernd gleichintensive Linien bei 161.8 bzw. 164.4 eV. Der Wert von 164.4 eV ist dem Schwefelatom S(1) zuzuordnen und entspricht dem für R-S-R-Gruppierungen zu erwartenden Wert. Ein positiv geladenes oder vierbindiges Schwefelatom müsste eine S 2p-Bindungsenergie um 166 eV ergeben.¹⁴⁻¹⁸ Die Linie bei 161.8 eV entspricht dem Schwefelatom S(2). Thiocarbonyl-Schwefelatome ergeben im allgemeinen eine S 2p-Bindungsenergie um 162.2 eV d.h., das S(2)-Atom in A ist etwas stärker negativ geladen, als dies in Thiocarbonylverbindungen der Fall ist. Ein zweibindiges Schwefelatom entsprechend Formel 2 müsste eine S 2p-Bindungsenergie um 164 eV haben.¹⁶

Damit folgt aus dem ESCA-Spektrum, dass Verbindung A durch die Strukturformel (Z)-1 bzw. (E)-1 beschrieben werden könnte; eine Unterscheidung zwischen diesen beiden Konfigurationsisomeren gestatten ESCA-Messungen nicht. Der relative niedrige S 2p-Wert für S(2) spräche für eine Beteiligung der Grenzformel 3; jedoch kann die positive Gegenladung höchstens teilweise am S(1) lokalisiert sein. Die mit der RKSA gefundene "no bond"-Wechselwirkung verursacht im ESCA-Spektrum keine Veränderungen der S 2p-Bindungsenergien, denn für diesen Fall wäre eine Erhöhung des S 2p-Wertes für S(2) zu erwarten.

Ähnlich wie für 5¹⁹ wurden CNDO/2-Berechnungen für 6 durchgeführt, wobei wegen Mängeln bei der Parametrisierung (übertriebene d-Beteiligung)²⁰ die d-

[†]Eine Bindungslängenalternierung wird auch dann gefunden, wenn sie durch die Wahl der Resonanzintegrale nicht vorgegeben wird (PPP-SC₈-Verfahren).

Abb. 3. Absorptionsspektum von A in Acetonitril und berechnete $\pi - \pi^*$. Übergänge (PPP-SC₈-Näherung).

Orbitale des Schwefels nicht berücksichtigt wurden. Unter Vorgabe der experimentellen Geometrie von 1 und Ersatz der Substituenten in 1 durch H-Atome ($R_{CH} =$ 1.0 Å) wurde für die Stammverbindung 6 ein stabilisierender Bindungsbeitrag zwischen den Schwefelatomen berechnet, der einer nichtbindenden Wechselwirkung zwischen diesen Atomen entspricht. Nach der Energieaufteilungsanalyse lässt sich der Stabilisierungseffekt nicht auf eine elektrostatische Wechselwirkung vom Coulomb-Typ zurückführen $(-E^{v} < E^{J} + E^{N})$, sondern auf kovalente Bindungsanteile (Resonanzenergie E^R der Bindung). Die Resonanzenergie der S... S-Bindung entspricht etwa dem stabilisierenden Gesamtbindungsbeitrag $(E_s \dots s \approx E_s^R \dots s)$.

In π -Näherung mit dem PPP-Verfahren durchgeführte Berechnungen an 1—soweit nicht anders beschrieben in Anwendung einer früher angegebenen Parametrisierung^{22–23}—führten zu den in Tabelle 3 angegebenen Bindungsabständen. Für die Bindungen im Heterocyclus werden in Übereinstimmung mit den Ergebnissen der RKSA alternierende Bindungslängen gefunden.[†] An Hand der π -Elektronendichte lässt sich ableiten, dass die π -Elektronenverteilung eher 1 als 3 entspricht. Das steht im Einklang mit dem ESCA-Spektrum. Bemerkenswert ist die Grösse der (vor allem durch das höchste besetzte MO bedingten) Bindungsordnung zwischen den Schwefelatomen, die deutlich macht, dass das π -System zur S... S-Wechselwirkung beiträgt.

Abb. 2. ESCA-Spektrum von (Z)-1.

-										
	3(1)	_	G(1)	1,746(3)	C(1)	-	5(1)	-	C(5)	103.4(1)
	S(1)	-	C(5)	1,739(3)	S(1)	-	C(1)	_	C(7)	113.2(2)
	S(2)	-	C(13)	1,682(3)	C(2)	-	C(1)	-	C(7)	122.8(3)
	C(1)	-	C(2)	1,348(4)	S(1)	-	C(1)	-	C(2)	123.9(2)
	C(1)	-	C(7)	1,484(4)	C(1)	-	C(2)	-	C(3)	124.4(3)
	C(2)	-	C(3)	1,424(4)	C(2)	-	C(3)	-	C(20)	118,5(3)
	C(3)	-	C(20)	1,499(4)	C(2)	-	C(3)	-	C(4)	121,1(3)
	C(3)	-	C(4)	1,361(4)	C(4)	-	C(3)	-	C(20)	120,4(3)
	C(4)	-	C(5)	1,420(4)	C(3)	-	C(4)	-	C(5)	127,3(3)
	C(5)	-	C(12)	1,401(4)	C(4)	-	C(5)	-	C(12)	118,5(3)
	C(6)	-	C(7)	1,394(4)	S(1)	-	C(5)	-	C(12)	121,7(2)
	C(6)	-	C(11)	1,391(4)	S(1)	-	C(5)	-	C(4)	119,8(2)
	C(7)	-	C(8)	1,387(4)	C(7)	-	C(6)	-	C(11)	120,3(3)
	C(8)	-	C(9)	1,393(4)	C(6)	-	C(7)	-	C(1)	119,5(3)
	C(9)	-	C(20)	1,376(5)	C(6)	-	C(7)	-	C(8)	118,9(3)
	C(10)	-	C(11)	1,385(5)	C(1)	-	C(7)	-	C(8)	121.6(3)
	C(12)	-	C(13)	1,393(4)	C(7)	-	C(8)	-	C(9)	120,6(3)
	C(13)	-	C(19)	1,503(4)	C(8)	-	C(9)	-	C(10)	120,2(5)
	C(14)	-	C(19)	1,392(5)	C(9)	-	C(10)	-	C(11)	119,9(3)
	C(14)	-	C(15)	1,392(5)	C(6)	-	C(11)	-	C(10)	120,1(3)
	C(15)	-	C(16)	1,380(6)	C(5)		C(12)	-	C(13)	129,9(3)
	C(16)	-	C(17)	1,366(6)	C(12)	-	C(13)	-	5(2)	124,0(2)
	C(17)	-	C(13)	1,398(5)	C(12)	-	C(13)	-	C(19)	116,3(3)
	C(18)	-	C(19)	1,395(4)	S(2)	-	C(13)	-	C(19)	119,7(2)
	C(2)	-	H(2)	0,97(3)	C(15)	-	C(14)	-	C(19)	121,1(3)
	C(4)	-	님(4)	0,99(3)	C(14)	-	C(15)	-	C(16)	119,4(3)
	0(6)	-	H(6)	1,01(4)	C(15)	-	C(16)	- '	C(17)	120,5(4)
	C(8)	-	н(з)	0,99(3)	C(16)	-	C(17)	-	C(18)	120,6(4)
	C(9)	-	н(э)	0,96(3)	C(17)	-	C(18)	-	C(19)	119,9(3)
	0(10)	-	8(10)	1,03(3)	C(18)	-	C(19)	-	C(14)	118,5(3)
	C(11)	-	H(11)	0,96(3)	C(13)	-	C(1∋)	-	C(13)	120,5(3)
	C(12)	-	H(12)	1.05(3)	C(13)	-	C(19)	-	C(14)	121,0(3)
	C(14)	-	H(14)	0,98(3)						
	C(15)	-	H(15)	1,05(4)						
	C(16)	-	H(16)	1.04(4)						
	C(17)	-	8(17)	0,98(4)						
	C(18)	-	H(18)	1.01(4)						
	C(20)	-	H(201)	1,06(4)						
	C(20)	-	H(202)	0,88(4)						

Tabelle 1. Bindungslängen (Å) und Bindungswinkel (°) von (Z)-1 (e.s.d. in Klammern)

C(20)

S(1)

-

-

H(203)

S(2)

0.94(4)

3,000(1)

Tabelle 2. Energieanteile für die Bindung S...S aus einer Energieaufteilungsanalyse nach Fischer und Kollmar²¹

Energieanteil ^{»)}	Energie in eV			
ESS	6,60395	12 05342	7	
E ^N SS	6,34947	J 12,90342		
^E SS	-12,95198		-0.03341	
ESS	- 0,00660			
e ^R SS	- 0,02825			

 $E_{S...S}$ $\Sigma = -0,03341$

a) vgl.²¹ b) $E^{J} = Energie der Elektron-Elektron-Abstossung vom Coulombtyp$ $<math>E^{N} = Energie der Kern-Kern-Abstossung$ $<math>E^{V} = Energie der Elektron-Kern-Anziehung$ $E^{K} = Austauschenergie$

 E^{R} = Resonanzenergie

Tabelle 3. π -Bindungsordnung, π -Ladungsordnung und berechnete C-C-Bindungsabstände (Å) für (Z)-1 (π -Landungsordnung)

Bindung	<i>π</i> -Bindungsordnung ^{∎)}	PPP-Näherung ^{a)b)}
C(1) -C(2)	C.014	1,37(+0,02)
C(2) -C(3)	0.451	1.44(+0.02)
C(3) -C(4)	0,8 06	1,37(+0,01)
C(4) -C(5)	0,454	1.44(+0.02)
C(5) -C(12)	0,694	1,39(-0,01)
C(1) -C(.7)	0,280	1,47(-0,01)
C(13)-C(19)	0,280	1,47(-0,03)
C(12)-C(13)	0₊563	1,42(-0,03)
C(1) -C(1)	0,383	1,75 ^{c)}
C(5) -C(1)	0 ,39 8	1,74 ^{c)}
C(13)-C(2)	0,735	1,68 ^{c)}
C(1) -C(2)	C,385	d)

a)Berechnung unter Verwendung der experimentellen Molekülgeometrie; $\beta_{rs} =$ -2,310 exp 2,3 (R_{rs} - 1,307), 25 Konfigurationen

b)in Klammern: Abweichung vom experimentellen Wert

c)abgeschätzt nach der Bindungslänge/*m*-Bindungsordnung-Beziehung für S(II)-S(sp²)-Bindungen nach⁷

d) Für "no bond resonance" S-S-Bindungen gibt es keinen gesicherten analytischen Zusammenhang zwischen π -Bindungsordnung und Bindungsabstand

PPP	a)	PPP-SC ^{b)}	Experimentelle Werte in				
			Cyclohexan	Ethanol	Acetonitril ()		
			65 3 S	-	-		
482	(-0,27)	537 (-0,08)	504	517	520 (3,96)		
3 72	(-0,62)	409 (-0,63)	439 S	421	410 S (3,56)		
298	(-0,11)	315 (-0,57)	345	343	339 (3,90)		

Tabelle 4. Länstwellige Elektronenübergänge für A in λ [nm], in Klammern log f bzw. log ϵ

a)Die Methylgruppe wurde nach einem Heteroatommodell berücksichtigt²⁷. Für $\beta_{ss} < 0$ verschieben sich die Absorptionswellenlängen zu kleineren Werten. b)vgl. Tabelle 3, Fußnote

c)Frühere Angaben, in Acetonitril⁵: 255 (4.39), 342(3.90), 512(4.28).

Ähnlich wie für die substituierten 5 und 7 lässt sich für 1 im UV/Vis-Spektrum eine Thiocarbonylbande (im unpolaren Cyclohexan als Schulter) nachweisen. Die kürzerwelligen Absorptionsbereiche entsprechen $\pi - \pi^*$ -Übergängen (vgl. Abb. 3). Die drei energieärmsten $\pi - \pi^*$ übergänge sind für den Heterocyclus 6 charakteristisch.

EXPERIMENTELLER TEIL

Lösung und Verfeinerung der Struktur von A

C20H16S2, Schmp. 203-204°C, kristallisiert aus Methylenchlorid in Form von grün glänzenden Prismen. Die Gitterkonstanten sind a = 7.813(1) Å, b = 18.381(3) Å, c = 11.302(1) Å, β = 90.48(1)°, ρ = 1.31 gcm⁻¹, Z = 4. Die Raumgruppe ist P 2₁/c. Die Intensitäten wurden mittels eines Hilger & Watts Vierkreisdiffraktometers im ω -scan für $0^\circ < \theta \le \overline{5^\circ}$ und im $\omega - 2\theta$ -scan für $5^\circ < \theta$ $\theta \le 27.5^{\circ}$ unter Verwendung von Mo K_a-Strahlung ($\lambda =$ 0.71069 Å) gemessen. Es wurden insgesamt 3427 symmetrieunabhängige Reflexe (34% nicht beobachtet) registriert. Die Standardreffexe (402, 304) zeigten während der Messung keine signifikanten Veränderungen. Korrigiert wurden die Intensitäten mittels Lorentz- und Polarisationsfaktor. Auf eine Absorptionskorrektur wurde verzichtet. Die Koordinaten der beiden symmetrieunabhängigen Schwefelatome wurden einer dreidimensionalen Pattersonsynthese entnommen. Die mit den Vorzeichen dieser Atome gerechnete Fouriersynthese lieferte die Koordinaten aller übrigen Nichtwasserstoffatome. Die endgültigen Parameter wurden durch Verfeinerung nach der Methode der kleinsten Fehlerquadrate (Block-Diagonalen-Verfahren) gewonnen. Die dabei minimalisierte Funktion war $\Sigma w(|F_0| - |F_c|)^2$. Zur Wichtung wurde die Funktion $w = 1/\{1 + [(|F_0| - P_2)/P_1]^2\}$ mit den Parametern $P_1 = 32.8$ und $P_2 = 16.4$ verwendet. Mit isotropen Temperaturfaktoren wurde nach 4 Zyklen Konvergenz erreicht. Der R-Wert (R = $\Sigma |F_0| - |F_c|/\Sigma |F_0|$) betrug in diesem Stadium R = 0.11. Nach Einführung anisotroper Temperaturfaktoren für alle Nichtwasserstoffatome und den aus der Differenzfouriersynthese bestimmten Wasserstoffatomen (isotrope Verfeinerung) erhielten wir nach zwei weiteren Verfeinerungszyklen einen abschliessenden Wert von R = 0.04.† Für alle Rechnungen wurde die NRC-Programmbibliothek von Ahmed²⁴ benutzt. Die verwendeten Atomformfaktoren wurden den International Tables for X-ray Crystallography²⁵ entnommen. Abb. 1 wurde mit dem Programm ORTEP²⁶ gezeichnet.

'ESCA-Spektrum

Aufnahmen am Photoelektronenspektrometer ESCA 3 (Vacuum Generator), Anregung mit Mg K_a -Strahlung ohne Monochromator. Zur Kalibrierung diente die C_{1s}-Linie (285.0 eV). Die Proben wurden auf doppelseitiges Klebeband aufgebracht, der Messfehler von drei unabhängigen Messungen betrug ± 0.1 eV.

Danksagung-Die Autoren danken Frau Dr. H. Fichtner und Herrn Dr. L. Kutschabsky, Akademie der Wissenschaften der DDR, Berlin-Buch, für die Durchführung der Diffraktometermessung und den Herren Dr. J. Jäger und Dr. H. Sklenar, Akademie der Wissenschaften der DDR, Berlin-Buch, für die Überlassung eines CNDO/2 Rechenprogrammes.

LITERATUR

- ¹D. Leaver und D. M. McKinnon, Chem. Ind. 461 (1964).
- ²G. Duguay, H. Quiniou und N. Lozac'h, Bull. Soc. Chim. Fr.
- 4485 (1967).
- ³E. Uhlemann und A. Hantschmann, unveröffentlicht.
- ⁴H. Prinzbach und E. Futterer, Advan. Heterocycl. Chem. 7, 82 (1966).
- ⁵M. Bard und G. Duguay, C. R. Acad. Sci. 275, 905 (1972).
- 6E. Klingsberg, Ouart. Rev. XXIII, 537 (1969).
- ⁷A. Hordvik, Quart. Rep. Sulfur Chem. 5, 21 (1970).
- ⁸A. Hordvik und L. J. Saethre, Isr. J. Chem. 10, 239 (1972).
- ⁹L. K. Hansen, A. Hordvik und L. J. Saethre, Organic Sulfur Chemistry (Edited by D. J. M. Stirling), Butterworths, London (1975).
- ¹⁰J. Sletten und O. C. Lokke, Acta Chem. Scand. A 31, 423 (1977).
- ¹¹R. Gleiter und R. Gygax, Topics Curr. Chem. 63, 49 (1976).
- ¹²L. M. Manojlovic und I. G. Edmunds, Acta Crystallogr. 18, 543 (1965).
- ¹³R. Richter, J. Sieler, J. Kaiser und E. Uhlemann, *Ibid.* B 32, 3290 (1976).
- ¹⁴L. J. Saethre, S. Svensson, N. Martensson, U. Gelius, P. A. Malmquist, E. Basilier und K. Siegbahn, *Chem. Phys.* 20, 431 (1977).
- ¹⁵L. J. Saethre, P. A. Malmquist, N. Martensson, S. Svensson, U. Gelius und K. Siegbahn, *Inorg. Chem.* 20, 399 (1981).
- ¹⁶B. J. Lindberg, S. Högberg, G. Malmsen, J. E. Bergmark, O. Nilsson, S. E. Kaelsson, A. Fahlman, U. Gelius, R. Pinel, M. Stavaux, Y. Mollier und N. Lozac'h, *Chem. Scripta* 1, 183 (1971).
- ¹⁷R. Szargan, R. Scheibe, L. Beyer, Ya. V. Salyn und V. J. Nefedov, *Tetrahedron* 35, 59 (1979).
- ¹⁸G. Leonhardt, R. Scheibe, W. Schramm, G. Voss, E. Fischer und G. Rembarz Z. Chem. 15, 193 (1975).

[†]Eine Liste der Atomkoordinaten, der Strukturfaktoren und der anisotropen Temperaturfaktoren kann bei Bedarf von den Autoren angefordert werden.

- ¹⁹J. Fabian, *ibid.* 13, 26 (1973).
 ²⁰D. P. Sandry und G. A. Segal, J. Chem. Phys. 47, 158 (1967).
- ²¹H. Fischer und H. Kollmar, Theor. Chim. Acta 16, 163 (1970). ²²J. Fabian, A. Mehlhorn und R. Zahradnik, J. Phys. Chem. 72,
- 3975 (1968).
- ²³J. Fabian und A. Mehlhorn, *Tetrahedron Letters* 2049 (1967).
 ²⁴F. R. Ahmed, S. R. Hall, M. E. Pippy und C. P. Saunderson,

NRC Crystallographic Programs for the IBM/360 System, National Research Council, Ottawa (1966). ²⁵ International Tables for X-ray Crystallography, Vol. III.

- Kynoch Press, Birmingham (1962). ²⁶C. K. Johnson, ORTEP Rep. ORNL-3794 (1965) Oak Ridge
- National Laboratory. ²⁷D. T. Clark und D. J. Fairweather, *Tetrahedron* 25, 4083 (1969).